Arria 10 Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Arria[®] 10 devices.

Arria 10 devices are offered in extended and industrial grades. Extended devices are offered in –E1 (fastest), –E2, and –E3 speed grades. Industrial grade devices are offered in the –I1, –I2, and –I3 speed grades.

The suffix after the speed grade denotes the power options offered in Arria 10 devices.

- L—Low static power
- S—Standard power
- M—Enabled with the V_{CC} PowerManager feature (you can power V_{CC} and V_{CCP} at nominal voltage of 0.90 V or lower voltage of 0.83 V)

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Arria 10 devices.

Operating Conditions

Arria 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria 10 devices, you must consider the operating requirements described in this section.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

For more information about the densities and packages of devices in the Arria 10 *family, refer to the Arria 10 Device Overview.*

Absolute Maximum Ratings

This section defines the maximum operating conditions for Arria 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

Conditions outside the range listed in Table 1 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Symbol	Description	Condition	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	_	-0.50	1.21	V
V _{CCP}	Periphery circuitry and transceiver fabric interface power supply	_	-0.50	1.21	V
V _{CCERAM}	Embedded memory power supply		-0.50	1.36	V
V _{CCPT}	Power supply for programmable power technology and I/O pre-driver	_	-0.50	2.46	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	_	-0.50	2.46	V
V _{CCPGM}	Configuration pins power supply	_	-0.50	2.46	V
V	I/O buffers power supply	3V I/O	-0.50	4.10	V
V _{CCIO}		LVDS I/O	-0.50	2.46	V
V _{CCA_PLL}	Phase-locked loop (PLL) analog power supply	_	-0.50	2.46	V
V _{CCT_GXB}	Transmitter power	_	-0.50	1.34	V
V _{CCR_GXB}	Receiver power	_	-0.50	1.34	V
V _{CCH_GXB}	Transmitter output buffer power	_	-0.50	2.46	V
V_{CCL_HPS}	HPS core voltage and periphery circuitry power supply	_	-0.50	1.27	V
V	HPS I/O buffers power supply	3V I/0	-0.50	4.10	V
V _{CCIO_HPS}	TIF'S I/O bullets power supply	LVDS I/O	-0.50	2.46	V
V _{CCIOREF_HPS}	HPS I/O pre-driver power supply	_	-0.50	2.46	V
V_{CCPLL_HPS}	HPS PLL power supply	_	-0.50	2.46	V
I _{OUT}	DC output current per pin	_	-25	25	mA
TJ	Operating junction temperature	_	-55	125	°C
T _{STG}	Storage temperature (no bias)		-65	150	°C

Table 1. Absolute Maximum Ratings for Arria 10 Devices—Preliminary

During transitions, input signals may overshoot to the voltage listed in Table 2 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 2.24 V for LVDS I/O can only be at 2.24 V for ~26% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 2.6 years.

Table 2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The LVDS I/O values are applicable to the VREFP_ADC and VREFN_ADC I/O pins.

Table 2. Maximum Allowed Overshoot During Transitions for Arria 10 Devices—Preliminary

Symbol	Description	Condit	ion (V)	Querebeet Duration of 9/ at T 100°C	Unit
Symbol	Description	LVDS I/O	3V I/O	Overshoot Duration as % at T _J = 100°C	Unit
		2.19	3.60	100	%
		2.24	3.65	26	%
Vi (AC)	AC input voltage	2.29	3.70	8	%
		2.34	3.75	3	%
		2.39	3.80	1	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria 10 devices.

Table 3 lists the steady-state voltage values expected from Arria 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 3. Recommended Operating Conditions for Arria 10 Devices—*Preliminary* (Part 1 of 2)

Symbol	Description	Condition Mini		Typical	Maximum	Unit	
.,		Standard and low power	0.87	0.9	0.93	V	
V _{CC}	Core voltage power supply	V _{CC} PowerManager ⁽¹⁾	0.8, 0.87	0.83, 0.9	0.86, 0.93	V	
		SmartVID	0.8	_	0.93	V	
	Periphery circuitry and transceiver	Standard and low power	0.87	0.9	0.93	V	
V _{CCP}	fabric interface power supply	V _{CC} PowerManager (1)	0.8, 0.87	0.83, 0.9	0.86, 0.93	V	
		SmartVID	0.8	_	0.93	V	
		1.8 V	1.71	1.8	1.89	V	
V _{CCPGM}	Configuration pins power supply	1.5 V	1.425	1.5	1.575	V	
		1.2 V	1.14	1.2	1.26	V	
V _{CCERAM}	Embedded memory power supply	0.95 V	0.92	0.95	0.98	V	

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
	Battery back-up power supply	1.8 V	1.71	1.8	1.89	V
V _{CCBAT} (2)	(For design security volatile key register)	1.2 V	1.14	1.2	1.26	V
V _{CCPT}	Power supply for programmable power technology and I/O pre-driver	1.8 V	1.71	1.8	1.89	V
		3.0 V (for 3V I/O only)	2.85	3.0	3.15	V
		2.5 V (for 3V I/O only)	2.375	2.5	2.625	V
V _{CCIO}		1.8 V	1.71	1.8	1.89	V
	I/O buffers power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	(3)	1.35	(3)	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	(3)	1.2	(3)	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	-	1.71	1.8	1.89	V
V _{REFP_ADC}	Precision voltage reference for voltage sensor	-	1.2475	1.25	1.2525	V
V	DC input voltage	3V I/0	-0.3	_	3.6	V
VI	DC Input voltage	LVDS I/O	-0.3		2.19	V
V ₀	Output voltage	—	0	_	V _{CCIO}	V
		Extended	0	_	100	°C
TJ	Operating junction temperature	Industrial	-40		100	°C
		Military	-55		125	°C
+ (4)	Power supply ramp time	Standard POR	200 µs	_	100 ms	—
t _{RAMP} (4)		Fast POR	200 µs		4 ms	—

Table 3. Recommended Operating Conditions for Arria 10 Devices—Preliminary (Part 2 of 2)

Notes to Table 3:

(1) You can operate V_{CC} PowerManager devices at either 0.83 V or 0.9 V. Power V_{CC} and V_{CCP} at 0.9 V to achieve -1 speed grade performance. Power V_{CC} and V_{CCP} at 0.83 V to achieve lower performance using the lowest power.

(2) If you do not use the design security feature in Arria 10 devices, connect V_{CCBAT} to a 1.5-V or 1.8-V power supply. Arria 10 power-on reset (POR) circuitry monitors V_{CCBAT}. Arria 10 devices do not exit POR if V_{CCBAT} is not powered up.

- (3) For minimum and maximum voltage values, refer to the "I/O Standard Specifications" section.
- (4) This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

Table 4 and Table 5 list the recommended operating conditions for Arria 10 transceiver power supplies.

Table 4. Transceiver Power Supply Operating Conditions for Arria 10 GX/SX Devices—Preliminary (Part 1 of 2)

				-		
Symbol	Description	on Condition ⁽²⁾		Typical	Maximum	Unit
		Chip-to-Chip ≤17.4 Gbps				
		Or	0.970	1.0	0.930	V
M	Transmitter power	Backplane ⁽¹⁾ ≤16.0 Gbps				
V _{CCT_GXB[L,R]}	supply	Chip-to-Chip ≤11.3 Gbps				
		Or	0.870	0.9		V
		Backplane ⁽¹⁾ ≤10.3125 Gbps				

Symbol	Description	Condition ⁽²⁾	Minimum	Typical	Maximum	Unit
V _{CCR_GXB[L,R]}	Receiver power	Chip-to-Chip \leq 17.4 Gbps Or 0.970 Backplane ⁽¹⁾ \leq 16.0 Gbps		1.0	1.030	V
	supply	Chip-to-Chip ≤11.3 Gbps Or Backplane ⁽¹⁾ ≤10.3125 Gbps	0.870	0.9	0.930	V
$V_{CCH_GXB[L,R]}$	Transceiver high voltage power		1.710	1.8	1.890	V

Table 4. Transceiver Power Supply Operating Conditions for Arria 10 GX/SX Devices—Preliminary (Part 2 of 2)

Note to Table 4:

(1) Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

(2) These data rate ranges vary depending on the transceiver speed grade. Refer to Table 19 for exact data rate ranges.

Symbol	Description	Condition ⁽³⁾	Minimum	Typical	Maximum	Unit
		Chip-to-Chip < 28.3 Gbps ⁽¹⁾				
		Or	1.070	1.1	1.130	V
		Backplane ⁽²⁾ < 17.4 Gbps				
	T	Chip-to-Chip < 15 Gbps				
V _{CCT_GXB[L,R]}	Transmitter power supply	Or	0.970	1.0	1.030	
	oupply	Backplane ⁽²⁾ < 14.2 Gbps				
		Chip-to-Chip < 11.3 Gbps				
		Or	0.870	0.9	0.930	V
		Backplane ⁽²⁾ < 10.3125 Gbps				
		Chip-to-Chip < 28.3 Gbps ⁽¹⁾				
		Or	1.070	1.1	1.130	V
		Backplane ⁽²⁾ < 17.4 Gbps				
		Chip-to-Chip < 15 Gbps				
V _{CCR_GXB[L,R]}	Receiver power supply	Or	0.970	1.0	1.030	V
		Backplane ⁽²⁾ < 14.2 Gbps				
		Chip-to-Chip < 11.3 Gbps				
		Or	0.870	0.9	0.930	V
		Backplane ⁽²⁾ < 10.3125 Gbps				
V _{CCH_GXB[L,R]}	Transceiver high voltage power supply	_	1.710	1.8	1.890	V

Table 5. Transceiver Power Supply Operating Conditions for Arria 10 GT Devices—Preliminary

Notes to Table 5:

(1) 28.3 Gbps is the maximum data rate for GT channels. 17.4 Gbps is the maximum data rate for GX channels.

(2) Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

(3) These data rate ranges vary depending on the transceiver speed grade. Refer to Table 21 for exact data rate ranges.

Table 6 lists the steady-state voltage and current values expected from Arria 10 system-on-a-chip (SoC) devices with ARM[®]-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. HPS Power Supply Operating Conditions for Arria 10 SX Devices ⁽¹⁾—Preliminary

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CCL_HPS}	HPS core voltage and periphery circuitry	HPS processor speed = 1.2 GHz	0.87	0.9	0.93	V
	power supply	HPS processor speed = 1.5 GHz	0.92	0.95	0.98	V
		3.0 V	2.85	3.0	3.15	V
V _{CCIO_HPS}	HPS I/O buffers power supply	2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CCIOREF_HPS}	HPS I/O pre-driver power supply	—	1.71	1.8	1.89	V
V _{CCPLL_HPS}	HPS PLL analog voltage regulator power supply	—	1.71	1.8	1.89	V

Note to Table 6:

(1) Refer to Table 3 for the steady-state voltage values expected from the FPGA portion of the Arria 10 SoC devices.

This section lists the following specifications:

- Supply Current and Power Consumption
- I/O Pin Leakage Current
- Bus Hold Specifications
- OCT Specifications
- Pin Capacitance

The OCT variation after power-up calibration specifications will be available in a future release of the *Arria 10 Device Datasheet*.

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Quartus[®] II PowerPlay Power Analyzer feature.

Use the Excel-based Early Power Estimator (EPE) before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

• For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

I/O Pin Leakage Current

Table 7 lists the Arria 10 I/O pin leakage current specifications.

Table 7. I/O Pin Leakage Current for Arria 10 Devices—Preliminary

Symbol	Description	Condition	Min	Max	Unit
I _I	Input pin	$V_I = 0 V$ to $V_{CCIOMAX}$	-80	80	μA
I _{0Z}	Tri-stated I/O pin	$V_0 = 0 V$ to $V_{CCIOMAX}$	-80	80	μA

Note to Table 7:

(1) If $V_0 = V_{CCI0}$ to $V_{CCI0MAX}$, 300 μ A of leakage current per I/O is expected.

Bus Hold Specifications

Table 8 lists the Arria 10 device bus hold specifications. The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

 Table 8. Bus Hold Parameters for Arria 10 Devices—Preliminary

							V _{ccio}	(V)					
Parameter	Symbol	ol Condition	1.2		1.	1.5 1.		1.8		2.5		3.0	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max)	8	_	12	_	30	_	50	_	70	_	μA
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min)	-8	_	-12	_	-30	_	-50	_	-70	_	μA
Bus-hold, low, overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}	_	125		175	_	200	_	300	_	500	μA
Bus-hold, high, overdrive current	I _{odh}	OV < V _{IN} < V _{CCIO}		-125		-175		-200		-300		-500	μA
Bus-hold trip point	V _{TRIP}	_	0.3	0.9	0.38	1.13	0.68	1.07	0.70	1.7	0.8	2	V

OCT Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Table 9 lists the Arria 10 OCT termination calibration accuracy specifications. The OCT calibration accuracy is valid at the time of calibration only.

Cumhal	Description	Condition (1)	Cali	Calibration Accuracy				
Symbol	Description	Condition (V)	-E1, -I1	i1, -l1 -E2, -l2		Unit		
48-Ω 60-Ω 80-Ω and 240-Ω R _S	Internal series termination with calibration (48- Ω 60- Ω 80- Ω and 240- Ω setting)	V _{CCI0} = 1.2	±15	±15	±15	%		
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%		
25- Ω and 50- Ω R _S	Internal series termination with calibration (25- Ω and 50- Ω setting)	V _{CCI0} = 1.8, 1.5, 1.2	±15	±15	±15	%		
34-Ω 40-Ω 48-Ω and 60-Ω R _S	Internal series termination with calibration (34- Ω 40- Ω 48- Ω and 60- Ω setting)	POD12 I/O standard, V _{CCI0} = 1.2	±15	±15	±15	%		
34-Ω 40-Ω 48-Ω 60-Ω 80-Ω 120-Ω and 240-Ω R _T	Internal parallel termination with calibration (34-Ω 40-Ω 48-Ω 60-Ω 80-Ω 120-Ω and 240-Ω setting)	POD12 I/O standard, V _{CCIO} = 1.2	±15	±15	±15	%		
$60-\Omega$ and $120-\Omega R_T$	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	-10 to +40	-10 to +40	-10 to +40	%		
20-Ω 30-Ω and 40-Ω R _T	Internal parallel termination with calibration (20-Ω 30-Ω and 40-Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%		
$50-\Omega R_T$	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%		

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change. Table 10 lists the Arria 10 OCT without calibration resistance to PVT changes.

Table 10. OCT Without Calibration Resistance Tolerance Specifications for Arria 10 Devices—Preliminary

Symbol	Description	Condition (1/)	Resis	stance Tolera	ance	Unit
Symbol	Description	Condition (V)	-E1, -I1	-E2, -I2	-E3, -I3	UIII
	Internal series termination	V _{CCIO} = 1.8, 1.5	±25	±35	±40	%
25-Ω R _S	without calibration $(25-\Omega \text{ setting})$	V _{CCI0} = 1.2	±25	±35	±40	%
	Internal series termination	V _{CCI0} = 1.8, 1.5	±25	±35	±40	%
50-Ω R _S	without calibration $(50-\Omega \text{ setting})$	V _{CCI0} = 1.2	±25	±35	±40	%
100-Ω R _D	Internal differential termination (100- Ω setting)	V _{CCI0} = 1.8	±25	±35	±40	%

Equation 1 shows the equation to determine the OCT variation without recalibration.

Equation 1. OCT Variation Without Recalibration (1), (2), (3), (4), (5), (6)-Preliminary

$$R_{OCT} = R_{SCAL} \left(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \right)$$

Notes to Equation 1:

- (1) The R_{OCT} value calculated from Equation 1 shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power up.
- (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of R_{SCAL} with voltage.

Pin Capacitance

Table 11 lists the Arria 10 pin capacitance.

Table 11. Pin Capacitance for Arria 10 Devices—Preliminary

Symbol	Description	Value	Unit
C_{IO_COLUMN}	Input capacitance on column I/O pins	2.5	рF
COUTFB	Input capacitance on dual-purpose clock output/feedback pins	2.5	pF

Internal Weak Pull-Up Resistor

Table 12 lists the weak pull-up resistor values for Arria 10 devices.

All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. For more information about the pins that support internal weak pull-up and internal weak pull-down features, refer to the *Arria 10 Device Family Pin Connection Guidelines*.

Table 12. Internal Weak Pull-Up Resistor Values for Arria 10 Devices—Preliminary

Symbol	Description	Condition (V) ⁽¹⁾	Value ⁽²⁾	Unit
		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
	Value of the I/O pin pull-up resistor before and during	$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
R _{PU}	configuration, as well as user mode if you have enabled the	$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
	programmable pull-up resistor option.	$V_{CCIO} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Notes to Table 12:

(1) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

(2) Valid with $\pm 10\%$ tolerances to cover changes over PVT.

I/O Standard Specifications

Table 13 through Table 18 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Arria 10 devices.

For minimum voltage values, use the minimum V_{CCIO} values. For maximum voltage values, use the maximum V_{CCIO} values.

For an explanation of terms used in Table 13 through Table 18, refer to "Glossary" on page 1–46.

Table 13. Single-Ended I/O Standards for Arria 10 Devices—*Preliminary* (Part 1 of 2)

I/O Standard		V _{ccio} (V))		V _{IL} (V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁾	I _{OH} ⁽¹⁾
i/U Stanuaru	Min	Тур	Max	Min Max		Min	Max	Max	Min	(mA)	(mA)
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{CCIO}$	0.65 x V _{CCIO}	V _{CCI0} + 0.3	0.45	V _{CCI0} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{CCIO}$	0.65 x V _{CCIO}	V _{CCI0} + 0.3	$0.25 \times V_{CCIO}$	$0.75 ext{ x V}_{\text{CCIO}}$	2	-2

I/O Standard		V _{CCI0} (V) V _{IL} (V)				V _{IH} (V) V _{OL} (V) V _{OH} (V)		I _{OL} (1)	I _{OH} ⁽¹⁾		
i/U Stalluaru	Min	Тур	Max	Min Max Min Max	Max	Min	(mA)	(mA)			
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{CCIO}$	0.65 x V _{CCIO}	V _{CCI0} + 0.3	$0.25 \times V_{CCIO}$	$0.75 ext{ x V}_{ ext{CCIO}}$	2	-2

Table 13.	Single-Ended I/O	Standards for Arria	a 10 Devices—	-Preliminary	(Part 2 of 2)
-----------	------------------	----------------------------	---------------	--------------	---------------

Note to Table 13:

(1) To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the **3.0-V LVTTL** specification (2 mA), you should set the current strength settings to 2 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the handbook.

1/0 Stondard		V _{ccio} (V)			V _{REF} (V)			V _{TT} (V)	
I/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 ext{ x V}_{\text{CCIO}}$	0.51 x V _{CCIO}	0.49 x V _{CCIO}	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}
SSTL-135 Class I, II	1.283	1.35	1.45	$0.49 \times V_{CCIO}$	$0.5 ext{ x V}_{\text{CCIO}}$	0.51 x V _{CCIO}	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{CCIO}
SSTL-125 Class I, II	1.19	1.25	1.31	$0.49 \times V_{CCIO}$	$0.5 ext{ x V}_{\text{CCIO}}$	0.51 x V _{CCIO}	0.49 x V _{CCIO}	0.5 x V _{CCIO}	0.51 x V _{ccio}
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CC10} /2	—
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CC10} /2	—
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 ext{ x V}_{\text{CCIO}}$	$0.5 ext{ x V}_{\text{CCIO}}$	0.53 x V _{CCIO}	_	V _{CC10} /2	—
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 ext{ x V}_{\text{CCIO}}$	0.51 x V _{CCIO}	—	—	
POD12	1.16	1.2	1.24	$0.69 \times V_{CCIO}$	$0.7 \times V_{CCIO}$	0.71 x V _{CCI0}	_	V _{CCIO}	—

 Table 15. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Arria 10 Devices—Preliminary (Part 1 of 2)

I/O Standard	V	_{L(DC)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	l _{ol} (1)	l _{oh} (1)	
i/U Stailualu	Min	Max	Min	Min Max		Min	Max	Min	(mA)	(mA)	
SSTL-18 Class I	-0.3	V _{REF} -0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} - 0.603	V _{TT} + 0.603	6.7	-6.7	
SSTL-18 Class II	-0.3	V _{REF} -0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCI0} -0.28	13.4	-13.4	
SSTL-15 Class I		V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} - 0.175	V _{REF} + 0.175	0.2 x V _{CCIO}	0.8 x V _{CCIO}	8	-8	
SSTL-15 Class II		V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} - 0.175	V _{REF} + 0.175	0.2 x V _{CCIO}	0.8 x V _{CCIO}	16	-16	
SSTL-135	_	$V_{REF} - 0.09$	V _{REF} + 0.09	_	$V_{REF} - 0.16$	V _{REF} + 0.16	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	—	—	
SSTL-125		$V_{\text{REF}} - 0.09$	V _{REF} + 0.09		V _{REF} – 0.15	V _{REF} + 0.15	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$		—	

I/O Standard	Vı	_{L(DC)} (V)	VIH(D	_{c)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{OH} (V)	l _{ol} (1)	l _{oh} (1)
i/U Stailualu	Min	Max	Min	Max	Max	Min	Max	Min	(mA)	(mA)
HSTL-18 Class I		V _{REF} –0.1	V _{REF} + 0.1	—	V _{REF} - 0.2	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	8	-8
HSTL-18 Class II		V _{REF} - 0.1	V _{REF} + 0.1	—	V _{REF} - 0.2	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	16	-16
HSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCI0} –0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	$V_{REF} - 0.08$	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12	—	$V_{\text{REF}} - 0.13$	V _{REF} + 0.13		$V_{REF} - 0.22$	V _{REF} + 0.22	0.1 x V _{CCIO}	$0.9 \times V_{CCIO}$	—	—
POD12	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	(0.7-0.15) x V _{CCI0}	(0.7 + 0.15) x V _{CCI0}		

Table 15. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Arria 10 Devices—*Preliminary* (Part 2 of 2)

Note to Table 15:

(1) To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the **SSTL15CI** specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the handbook.

I/O Standard		V _{ccio} (V)		V _{SWIN}	_{G(DC)} (V)	V _{SWING}	_(AC) (V)		V _{IX(AC)} (V)	
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Min	Тур	Max
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCI0} + 0.6	0.5	V _{CCI0} + 0.6	V _{CCIO} /2 – 0.175	_	V _{CCIO} /2 + 0.175
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	$2(V_{IH(AC)} - V_{REF})$	2(V _{REF} – V _{IL(AC)})	V _{CCIO} /2 – 0.15	_	V _{CCIO} /2 + 0.15
SSTL-135	1.283	1.35	1.45	0.18	(1)	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$	V _{CCIO} /2 – 0.15	V _{CCI0} /2	V _{CCIO} /2 + 0.15
SSTL-125	1.19	1.25	1.31	0.18	(1)	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$	V _{CCIO} /2 – 0.15	V _{CCI0} /2	V _{CCIO} /2 + 0.15
POD12	1.16	1.2	1.24	0.16		0.3		V _{REF} – 0.08		V _{REF} + 0.08

Table 16. Differential SSTL I/O Standards for Arria 10 Devices—Preliminary

Note to Table 16:

(1) The maximum value for V_{SWING(DC)} is not defined. However, each single-ended signal needs to be within the respective single-ended limits (V_{IH(DC)} and V_{IL(DC)}).

I/O		V _{ccio} (V))	V _{DIF(D}	_{IC)} (V)	V _{DIF(A}	_{1C)} (V)	١	/ _{IX(AC)} (V)		١	/ _{CM(DC)} (V)
Standard	Min	Тур	Max	Min	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
HSTL-18 Class I, II	1.425	1.5	1.575	0.2	_	0.4	_	0.78	_	1.12	0.78	_	1.12
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.4	_	0.68	_	0.9	0.68	_	0.9
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	0.3	V _{CCI0} + 0.48	_	0.5 x V _{CCI0}	_	0.4 x V _{CCI0}	0.5 x V _{CCI0}	0.6 x V _{CCI0}
HSUL-12	1.14	1.2	1.3	$2(V_{IH(DC)} - V_{REF})$	2(V _{REF} – V _{IH(DC)})	$2(V_{IH(AC)} - V_{REF})$	2(V _{REF} – V _{IH(AC)})	0.5 x V _{ccio} – 0.12	0.5 x V _{CCI0}	0.5 x V _{CCI0} +0.12	0.4 x V _{CCIO}	0.5 x V _{CCI0}	0.6 x V _{CCI0}

Table 17. Differential HSTL and HSUL I/O Standards for Arria 10 Devices—Preliminary

Table 18.	Differential I/O	Standard Specification	s for Arria 10 Devices	<i>—Preliminary</i>
-----------	-------------------------	-------------------------------	------------------------	---------------------

1/0 Standard	V	_{ccio} (V	/)		V _{ID} (mV) ⁽¹⁾			V _{ICM(DC)} (V)		Vo	10 (V) (2)	Va	_{ICM} (V)	(2)
I/O Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Transm	nitter, r	receiver,					igh-speed trans I/O pin specifica					dard. Fo	or trans	mitter,
LVDS ⁽³⁾	1.71	1.8	1.89	100	V _{CM} =		0	D _{MAX} ≤700 Mbps	1.85	0.247		0.6	1.125	1.25	1.375
	1.71	1.0	1.05	100	1.25 V	.25 V	1	D _{MAX} >700 Mbps	1.6	0.247		0.0	1.125	1.25	1.575
RSDS (HIO) (4)	1.71	1.8	1.89	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO) ⁽⁵⁾	1.71	1.8	1.89	200	_	600	0.4	_	1.325	0.25	_	600	1	1.2	1.4
LVPECL (6)	1.71	1.8	1.89	300			0.6	D _{MAX} ≤700 Mbps	1.7						
	1.71	1.0	1.09	500			1	D _{MAX} >700 Mbps	1.6						

Notes to Table 18:

(1) The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}

(2) R_L range: 90 $\leq R_L \leq 110 \Omega$

(3) For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0V to 1.6V for data rates above 700 Mbps and 0 V to 1.85 V for data rates below 700 Mbps.

(4) For optimized RSDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.4 V.

(5) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.4 V to 1.325 V.

(6) For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

Switching Characteristics

This section provides performance characteristics of Arria 10 core and periphery blocks for extended grade devices.

Transceiver Performance Specifications

Table 19, Table 20, Table 21, and Table 22 describe transceiver performance specifications.

Table 19. Transceiver Performance for Arria 10 GX/SX Devi	ces— <i>Preliminary</i>
---	-------------------------

Symbol/Description	Condition	Transceiver Speed Grade 1	Transceiver Speed Grade 2	Transceiver Speed Grade 3	Transceiver Speed Grade 4	Transceiver Speed Grade 5	Unit
Transmitter and Rec	eiver Data Rate						
	Maximum data rate						
	$V_{CCR_GXB} = V_{CCT_GXB}$ = 1.0 V	17.4	15	14.2	12.5	8	Gbps
Chip-to-chip (1)	Maximum data rate						
	$V_{CCR_GXB} = V_{CCT_GXB}$ = 0.9 V	11.3	11.3	11.3	11.3	8	Gbps
	Minimum Data Rate		•	611/125 ⁽²⁾	•	•	Mbps
	Maximum data rate						
	$V_{CCR_GXB} = V_{CCT_GXB}$ = 1.0 V	16	14.2	12.5	10.3125	6.5536	Gbps
Backplane ⁽¹⁾	Maximum data rate						
	$V_{CCR_GXB} = V_{CCT_GXB}$ = 0.9 V	10.3125	10.3125	10.3125	10.3125	6.5536	Gbps
	Minimum Data Rate		I	611/125 ⁽²⁾	I	I	Mbps
ATX PLL							
Supported Output	Maximum frequency	8.7	7.5	7.1	6.25	4	GHz
Frequency	Minimum frequency		I	500	I	I	MHz
Fractional PLL							
Supported Output	Maximum frequency	6.25	6.25	6.25	6.25	4	GHz
Frequency	Minimum frequency		1	305.5	1	1	MHz
CMU PLL	•	•					•
Supported Output	Maximum frequency	8.7	7.5	7.1	6.25	4	GHz
Frequency	Minimum frequency		•	305.5	•	•	MHz

Notes to Table 19:

(1) Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

(2) Arria 10 transceivers can support data rates down to 125 Mbps with over sampling.

Question (Personintion	Oanditions	Core	e Speed Grade	with Power Op	tions	U
Symbol/Description	Conditions	-1M ⁽¹⁾	-1 ⁽²⁾	-2	-3	– Units
20-bit interface - FIFO	V _{CC} = 0.9	516	516	400	400	MHz
20-bit interface - Registered	V _{CC} =0.9	491	491	400	400	MHz
32-bit interface - FIFO	V _{CC} =0.9	441	441	404	335	MHz
32-bit interface - Registered	V _{CC} =0.9	441	441	404	335	MHz
64-bit interface - FIFO	V _{CC} =0.9	272	272	234	222	MHz
64-bit interface - Registered	V _{CC} =0.9	272	272	234	222	MHz
PCIe Gen3 HIP-Fabric interface	V _{CC} =0.9	300	300	250	250	MHz
20-bit interface - FIFO	V _{CC} =0.83	400	N/A	N/A	N/A	MHz
20-bit interface - Registered	V _{CC} =0.83	400	N/A	N/A	N/A	MHz
HSSI-Fabric 32-bit interface - FIFO	V _{CC} =0.83	335	N/A	N/A	N/A	MHz
32-bit interface - Registered	V _{CC} =0.83	335	N/A	N/A	N/A	MHz
64-bit interface - FIFO	V _{CC} =0.83	222	N/A	N/A	N/A	MHz
64-bit interface - Registered	V _{CC} =0.83	222	N/A	N/A	N/A	MHz
PCIe Gen3 HIP-Fabric interface	V _{CC} =0.83	250	N/A	N/A	N/A	MHz

Table 20. High-Speed Serial Interface-Fabric Interface Performance for Arria 10 GX/SX Devices—Preliminary

Notes to Table 20:

(1) -1M = -1 core speed grade devices with the V_{CC} PowerManager feature.

(2) Does not apply to -1M devices.

Table 21. Transceiver Performance for Arria 10 GT Devices—Prelimin	ary (Part 1 of 2)
--	-------------------

Symbol/Description	Conditio	Transceiver Speed Grade 2	Transceiver Speed Grade 3	Transceiver Speed Grade 4	Unit	
Transmitter and Receiv	er Data Rate					
	Maximum data rate	GT Channel ⁽²⁾	28.3	26	20	Gbps
	$V_{CCR_GXB} = V_{CCT_GXB} =$ 1.1 V	GX Channel	17.4	15	15	Gbps
Chip-to-chip ⁽¹⁾	Maximum data rate V _{CCR_GXB} = V _{CCT_GXB} = 1.0 V		15	14.2	12.5	Gbps
	Maximum data rate V _{CCR_GXB} = V _{CCT_GXB} = 0.9 V		11.3	11.3	11.3	Gbps
	Minimum Data Rate			611/125 ⁽³⁾		Mbps

Symbol/Description	Condition	Transceiver Speed Grade 2	Transceiver Speed Grade 3	Transceiver Speed Grade 4	Unit
	Maximum data rate				
	$V_{CCR_GXB} = V_{CCT_GXB} = 1.1 V$	17.4	14.2	14.2	Gbps
	Maximum data rate				
Backplane ⁽¹⁾	$V_{CCR_GXB} = V_{CCT_GXB} = 1.0 V$	14.2	12.5	10.3125	Gbps
	Maximum data rate			10.3125	Gbps
	$V_{CCR_GXB} = V_{CCT_GXB} = 0.9 V$	10.3125	10.3125		
	Minimum Data Rate		611/125 ⁽³⁾		Mbps
ATX PLL					
Supported Output	Maximum frequency	14.05	13	10	GHz
Frequency	Minimum frequency		500		
Fractional PLL		·			•
Supported Output	Maximum frequency	6.25	6.25	6.25	GHz
Frequency	Minimum frequency		305.5		
CMU PLL	-				
Supported Output	Maximum frequency	8.7	7.5	7.5	GHz
Frequency	Minimum frequency		305.5	•	MHz

Table 21. Transceiver Performance for Arria 10 GT Devices—*Preliminary* (Part 2 of 2)

Notes to Table 21:

(1) Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

(2) GT channels are only available when V_{CCT_GXB} = 1.1V and V_{CCR_GXB} = 1.1V.

(3) Arria 10 transceivers can support data rates down to 125 Mbps with over sampling.

Cumbel/Decerintien	Conditions	Core Spee	Units		
Symbol/Description	Conditions	-1	-2	-3	Units
20-bit interface - FIFO	V _{CC} = 0.9	516	400	400	MHz
20-bit interface - Registered	V _{CC} =0.9	491	400	400	MHz
32-bit interface - FIFO	V _{CC} =0.9	441	404	335	MHz
32-bit interface - Registered	V _{CC} =0.9	441	404	335	MHz
64-bit interface - FIFO	V _{CC} =0.9	439	407	313	MHz
64-bit interface - Registered	V _{CC} =0.9	439	407	313	MHz
PCIe Gen3 HIP-Fabric interface	V _{CC} =0.9	300	250	250	MHz

Table 22. High-Speed Serial Interface-Fabric Interface Performance for Arria 10 GT Devices—Preliminary

Table 23 lists the Arria 10 transceiver specifications.

Table 23. Transceiver Specifications for Arria 10 GX, SX, and GT Devices—*Preliminary* (Part 1 of 3)

Symbol/	0 and it is a	Transceive	11-24			
Description	Condition	Min	Тур	Max	– Unit	
Reference Clock						
Supported I/O Standards	Dedicated reference clock pin	CML, Differential LV	/PECL, LVDS, and H(CSL		
Standards	RX reference clock pin	CML, Differential L	/PECL, and LVDS			
Rise time	20% to 80%		—	250	ps	
Fall time	80% to 20%		—	250	ps	
Duty cycle	—	45	—	55	%	
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe [®])	30	_	33	kHz	
Spread-spectrum downspread	PCIe	—	0 to -0.5	_	%	
On-chip termination resistors	_	_	100	_	Ω	
Absolute V _{MAX}	Dedicated reference clock pin	_	_	1.6	V	
	RX reference clock pin	—	-	1.2	V	
Absolute V _{MIN}	—	-0.4	—	—	V	
Peak-to-peak differential input voltage	-	200	_	1600	mV	

Symbol/	O and the set	Transceiv	Transceiver Speed Grades 1, 2, 3, 4, and 5				
Description	Condition	Min	Тур	Max	Unit		
	100 Hz	_	—	-70	dBc/Hz		
Transmitter	1 kHz	_		-90	dBc/Hz		
refclk Phase Noise (622	10 kHz	_	—	-100	dBc/Hz		
MHz) ⁽⁸⁾	100 kHz	—	—	-110	dBc/Hz		
	≥ 1 MHz	_	—	-120	dBc/Hz		
Transmitter REFCLK Phase Jitter (100 MHz)	10 kHz to 1.5 MHz (PCle)	_	_	3	ps (rms)		
R _{REF}	—	—	2.0K ±1%	_	Ω		
Transceiver Clocks	5						
fixedclk clock	PCIe		100 or 125		MHz		
frequency	Receiver Detect						
reconfig_clk	Reconfiguration interface	_	100	_	MHz		
Receiver							
Supported I/O Standards	_	High Spe	ed Differential I/O, CML	, Differential LVPEC	L, and LVDS		
Absolute V _{MAX} for a receiver pin ⁽¹⁾	_	_	_	1.2	V		
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	V		
Maximum peak- to-peak differential input voltage V _{ID} (diff p-p) before device configuration ⁽⁹⁾	_	_	_	1.6	V		
Minimum differential eye opening at receiver serial input pins ⁽⁷⁾	_	85	_	_	mV		
	85- Ω setting		85 ± 30%		Ω		
Differential on- chip termination	100-Ω setting		100 ± 30%		Ω		
resistors	120-Ω setting		120 ± 30%		Ω		
	150- Ω setting	_	150 ± 30%		Ω		
t _{LTR}				10	μs		
t _{LTD}	_	4			μs		
t _{LTD_manual} (4)	_	4			μs		
t _{LTR_LTD_manual} <i>(5)</i>	—	15	_		μs		
Run Length	_			200	UI		

Table 23. Transceiver Specifications for Arria 10 GX, SX, and GT Devices—*Preliminary* (Part 2 of 3)

Symbol/	Condition	Transceive	3, 4, and 5	Ilmit	
Description	Condition	Min	Тур	Max	Unit
CDR PPM	PCIe-only		—	300	± PPM
tolerance	All other protocols		—	1000	± PPM
Transmitter					
Supported I/O Standards	_	Hiç	gh Speed Differential	I/O	—
	85- Ω setting	_	85 ± 20%	—	Ω
Differential on- chip termination	100- Ω setting		100 ± 20%		Ω
resistors	120- Ω setting		120 ± 20%	_	Ω
	150- Ω setting		150 ± 20%	_	Ω
Rise time ⁽⁶⁾	20% to 80%	30	—	160	ps
Fall time ⁽⁶⁾	80% to 20%	30	—	160	ps
Intra-differential pair skew	Tx $V_{CM} = 0.5$ V and slew rate of 15 ps			15	ps

Table 23. Transceiver Specifications for Arria 10 GX, SX, and GT Devices—Preliminary (Part 3 of 3)

Notes to Table 23:

(1) The device cannot tolerate prolonged operation at this absolute maximum.

(2) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

(3) t_{LTD} is time required for the receiver CDR to start recovering valid data after the $rx_is_lockedtodata$ signal goes high.

(4) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

(5) $t_{LTR_LTD_manual}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

(6) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.

(7) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

(8) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).

(9) DC coupling specifications are pending silicon characterization.

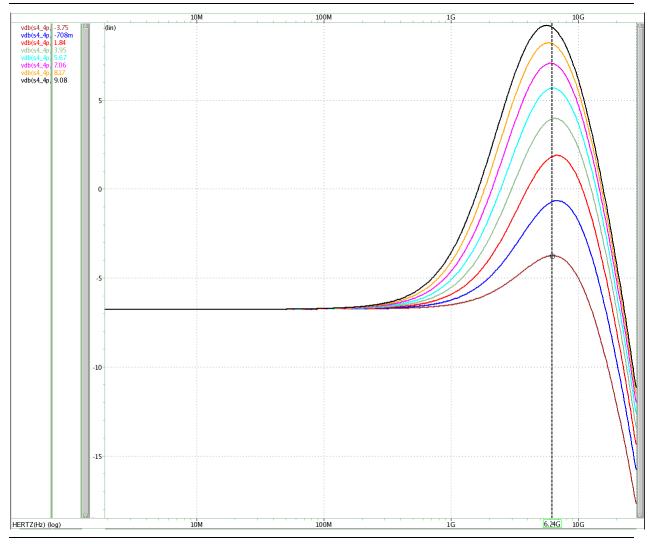


Figure 1. CTLE Response in High Gain Mode for Arria 10 Devices with Data Rates \geq 8 Gbps

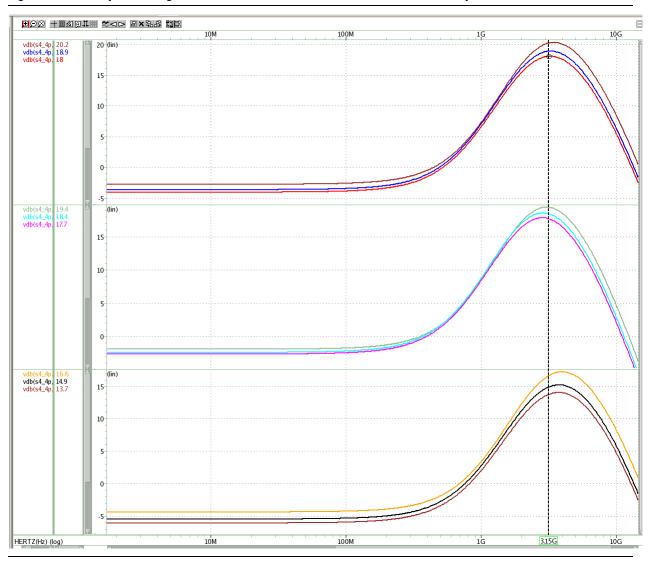


Figure 2. CTLE Response in High Gain Mode for Arria 10 Devices with Data Rates < 8 Gbps

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, temperature sensing diode, and voltage sensor specifications.

Clock Tree Specifications

Table 24 lists the clock tree specifications for Arria 10 devices.

	Performance					
Parameter	-E1L,-E1M ⁽¹⁾ , -E1S, -I1L, -I1M ⁽¹⁾	-E2L, -I2L	–E1M ⁽²⁾ , –I1M ⁽²⁾ , –E3S, –I3S	Unit		
Global clock, regional clock, and small periphery clock	644	644	644	MHz		
Large periphery clock	525	525	525	MHz		

Notes to Table 24:

(1) When you power V_{CC} and V_{CCP} at nominal voltage of 0.90 V.

(2) When you power V_{CC} and V_{CCP} at lower voltage of 0.83 V.

PLL Specifications

Table 25 and Table 26 list the Arria 10 PLL specifications.

Table 25. Fractional PLL Specifications for Arria 10 Devices—Preliminary (Part 1 of 2)
--

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-1 speed grade	27		1000 ⁽¹⁾	MHz
f _{IN}	Input clock frequency	-2 speed grade	27	_	TBD (1)	MHz
		–3 speed grade	27	_	TBD (1)	MHz
f _{FINPFD}	Fractional input clock frequency to the phase frequency detector (PFD)	_	50	_	325	MHz
		-1 speed grade	2.4	_	6.25	GHz
f _{vco}	PLL voltage-controlled oscillator (VCO) operating range	-2 speed grade	2.4	_	6.25	GHz
		-3 speed grade	2.4	_	6.25	GHz
t _{einduty}	Input clock duty cycle		40	_	60	%
		-1 speed grade		_	800	MHz
f _{out_c}	Output frequency for internal global or regional clock (c counter)	-2 speed grade		_	720	MHz
		-3 speed grade		_	650	MHz
	Output frequency to physical medium	-1 speed grade		_	6.25	GHz
f _{out_l}	attachment (PMA) TX or clock generation	-2 speed grade		_	6.25	GHz
	buffer (L counter)	–3 speed grade		_	6.25	GHz
t _{dyconfigclk}	Dynamic configuration clock for mgmt_clk and scanclk	—	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or deassertion of areset	—	_	_	1	ms

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non- post-scale counters/delays)	_	_	_	1	ms
		Low		TBD	—	MHz
f _{CLBW}	PLL closed-loop bandwidth	Medium		TBD		MHz
		High		TBD	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift			—	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_	_	ns
L (2) (3)	Input clock cycle-to-cycle jitter	$F_{REF} \geq 100 \; MHz$		—	TBD	UI (p-p)
t _{INCCJ} (2), (3)		F _{REF} < 100 MHz		—	TBD	ps (p-p)
+ (4)	Period jitter for clock output on a regular	$F_{OUT} \geq 100 \; MHz$		—	TBD	ps (p-p)
t _{foutpj_io} (4)	I/O in fractional PLL	F _{OUT} < 100 MHz		—	TBD	mUI (p-p)
+ (4)	Cycle-to-cycle jitter for clock output on a	$F_{OUT} \geq 100 \; MHz$		—	TBD	ps (p-p)
t _{foutccj_io} (4)	regular I/O in fractional PLL	F _{OUT} < 100 MHz		—	TBD	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	—	_	32	_	bit
k _{VALUE}	Numerator of fraction		—	2147483648	—	—
f _{RES}	Resolution of VCO frequency (f _{INPFD} = 100 MHz)	—	_	0.023	_	Hz

Table 25. Fraction	I PLL Specifications for Arria 10 Devices-	-Preliminarv ((Part 2 of 2)

Notes to Table 25:

(1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

(2) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

(3) F_{REF} is f_{IN}/N , specification applies when N = 1.

(4) External memory interface clock output jitter specifications use a different measurement method, which are available in Table 36 on page 1–33.

 Table 26. I/O PLL Specifications for Arria 10 Devices—Preliminary (Part 1 of 2)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-1 speed grade	10	—	800	MHz
f _{IN} (1)	Input clock frequency	–2 speed grade	10	—	700	MHz
		–3 speed grade	10	—	650	MHz
f _{INPFD}	Integer input clock frequency to the PFD	—	10	—	325	MHz
		-1 speed grade	600	—	1600	MHz
f _{VCO}	PLL VCO operating range	–2 speed grade	600	—	1434	MHz
		–3 speed grade	600	—	1250	MHz
f _{CLBW}	PLL closed-loop bandwidth	—	0.1	—	8	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	_	40	_	60	%

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-1 speed grade	—	—	800	MHz
f _{OUT_C}	Output frequency for internal global or regional clock (c counter)	-2 speed grade	—	—	720	MHz
		-3 speed grade	_	_	650	MHz
		-1 speed grade	—	_	TBD	MHz
f _{OUT_EXT}	Output frequency for external clock output	-2 speed grade	_	_	TBD	MHz
	output	-3 speed grade	_	—	TBD	MHz
f _{outduty}	Duty cycle for dedicated external clock output (when set to 50%)	—	45	50	55	%
f _{FCOMP}	External feedback clock compensation time	_	—	_	10	ns
t _{dyconfigclk}	Dynamic configuration clock for mgmt_clk and scanclk	_	—	_	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or deassertion of areset	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non- post-scale counters/delays)	_	_	_	1	ms
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	—	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_		ns
t _{INCCJ} <i>(2), (3)</i>	Input clock cycle-to-cycle jitter	$F_{REF} \geq 100 \; MHz$	_	—	TBD	UI (p-p)
INCCJ		F _{REF} < 100 MHz	_	—	TBD	ps (p-p)
+	Period jitter for dedicated clock output in	$F_{0UT} \geq 100 \text{ MHz}$	_	—	TBD	ps (p-p)
t _{outpj_dc}	integer PLL	F _{OUT} < 100 MHz	_	—	TBD	mUI (p-p)
t	Cycle-to-cycle jitter for dedicated clock	$F_{0UT} \! \geq \! 100 \; MHz$		_	TBD	ps (p-p)
t _{outccj_dc}	output in integer PLL	F _{OUT} < 100 MHz	_	—	TBD	mUI (p-p)
t	Period jitter for clock output on the	$F_{OUT} \geq 100 \; MHz$	_		TBD	ps (p-p)
t _{outpj_io} <i>(4)</i>	regular I/O in integer PLL	F _{OUT} < 100 MHz		—	TBD	mUI (p-p)
touroo	Cycle-to-cycle jitter for clock output on	$F_{OUT} \geq 100 \text{ MHz}$			TBD	ps (p-p)
t _{outccj_io} (4)	the regular I/O in integer PLL	F _{OUT} < 100 MHz	_		TBD	mUI (p-p)
tores outsi se	Period jitter for dedicated clock output in	$F_{OUT} \geq 100 \; MHz$			TBD	ps (p-p)
t _{CASC_OUTPJ_DC}	cascaded PLLs	F _{OUT} < 100 MHz	—	—	TBD	mUI (p-p)
f _{RES}	Resolution of VCO frequency (f _{INPFD} = 100 MHz)	_	_	TBD		Hz

Table 26. I/O PLL Specifications for Arria 10 Devices— <i>Preliminary</i> (Part 2 o

Notes to Table 26:

(1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

(2) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

(3) F_{REF} is f_{IN}/N , specification applies when N = 1.

(4) External memory interface clock output jitter specifications use a different measurement method, which are available in Table 36 on page 1–33.

DSP Block Specifications

Table 27 lists the Arria 10 DSP block performance specifications.

	Performance								
Mode	–E1L, –E1M ⁽¹⁾ , –E1S	–I1L, –I1M ⁽¹⁾	-E2L	- I 2L	–E1M ⁽²⁾ , –E3S	—I1M ⁽²⁾ , —I3S	Unit		
Modes using One DSP Block									
Independent 18 x 19 multiplication	520	500	420	400	360	340	MHz		
Independent 27 x 27 multiplication	520	500	420	400	360	340	MHz		
Two 18 x 19 multiplier adder mode	520	500	420	400	360	340	MHz		
18 x 18 multiplier added summed with 36-bit input	520	500	420	400	360	340	MHz		
Mode using Two DSP Blocks									
Complex 18 x 19 multiplication	520	500	420	400	360	340	MHz		

Table 27. DSP Block Performance Specifications for Arria 10 Devices—Preliminary

Notes to Table 27:

(1) When you power V_{CC} and V_{CCP} at nominal voltage of 0.90 V.

(2) When you power V_{CC} and V_{CCP} at lower voltage of 0.83 V.

Memory Block Specifications

Table 28 lists the Arria 10 memory block specifications.

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to **50%** output duty cycle. Use the Quartus II software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in $f_{\rm MAX}$

 Table 28. Memory Block Performance Specifications for Arria 10 Devices—Preliminary (Part 1 of 2)

		Resources Used		Performance					
Memory	Mode	ALUTS	Memory	–E1L, –E1M ⁽¹⁾ , –E1S	–I1L, –I1M ⁽¹⁾	–E1M ⁽²⁾ , –I1M ⁽²⁾	E2L, I2L	E3S, I3S	Unit
MLAB	Single port, all supported widths (x16/x32)	0	1	700	660	490	570	490	MHz
	Simple dual-port, all supported widths (x16/x32)	0	1	700	660	490	570	490	MHz
	Simple dual-port with read and write at the same address	0	1	460	450	330	400	330	MHz
	ROM, all supported width (x16/x32)	0	1	700	660	490	570	490	MHz

		Resources Used		Performance					
Memory	Mode	ALUTS	Memory	–E1L, –E1M ⁽¹⁾ , –E1S	–I1L, –I1M ⁽¹⁾	–E1M ⁽²⁾ , –I1M ⁽²⁾	E2L, 12L	–E3S, –I3S	Unit
	Single-port, all supported widths	0	1	730	690	510	625	530	MHz
	Simple dual-port, all supported widths	0	1	730	690	510	625	530	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	550	520	410	470	410	MHz
M20K Block	Simple dual-port with ECC enabled, 512 x 32	0	1	470	450	360	410	360	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 x 32	0	1	620	590	470	520	470	MHz
	True dual port, all supported widths	0	1	730	690	510	625	530	MHz
	ROM, all supported widths	0	1	730	690	510	680	570	MHz

Table 28. Memory Block Performance Specifications for Arria 10 Devices—*Preliminary* (Part 2 of 2)

Notes to Table 28:

(1) When you power V_{CC} and V_{CCP} at nominal voltage of 0.90 V.

(2) When you power V_{CC} and V_{CCP} at lower voltage of 0.83 V.

Temperature Sensing Diode Specifications

Table 29 lists the internal temperature sensing diode specifications for the Arria 10 devices.

Table 29. Internal Temperature Sensing Diode Specifications for Arria 10 Devices—Preliminary

Temperature Range	Accuracy	Sampling Rate	Resolution
-40 to 100°C	±5°C	1 Ksps	10 bits

Internal Voltage Sensor Specifications

Table 30 lists the internal voltage sensor specifications for the Arria 10 devices.

Table 30. Internal Voltage Sensor Specifications for Arria 10 Devices—*Preliminary*

Parameter	Minimum	Typical	Maximum	Unit
Resolution	10		12	Bit
Sampling rate		_	500	Ksps
Differential non-linearity (DNL)	—		±1	LSB
Integral non-linearity (INL)	—		±3	LSB
Input capacitance	—	20	—	pF
Signal to noise and distortion ratio (SNR)	60	_	—	dB
Clock frequency	—		20	MHz
Unipolar Input Mode				
Input signal range for Vsigp	0		1.5	V
Common mode voltage on Vsign	0		0.25	V
Input signal range for Vsigp – Vsign	0		1.25	V
Bipolar Input Mode				
Input signal range for Vsigp	0		1.25	V
Input signal range for Vsigp – Vsign	-0.625		0.625	V

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design- and system-specific factors. You must perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 31 lists high-speed I/O timing for Arria 10 devices.

Table 31. High-Speed I/O Specifications for Arria 10 Devices ^{(1), (2), (10)}—Preliminary (Part 1 of 2)

Symbol	Condition		., –E1N -I1L, –I	l ⁽¹⁵⁾ , –E1S, 1M ⁽¹⁵⁾		- E 2L,	- 2L	–E1M ⁽¹⁶⁾ , –I1M ⁽¹⁶⁾ , –E3S, –I3S			Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 $^{(3)}$	10	_	800	10	_	700	10	_	625	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(3)}$	10	_	625	10	_	625	10	_	TBD	MHz
f _{HSCLK_OUT} (output clock frequency)	_		_	800 (4)	_	_	700 (4)	_	_	625 ⁽⁴⁾	MHz
Transmitter											
	SERDES factor $J = 4 \text{ to } 10^{(5), (6), (7)}$	(6)		1600 ⁽⁸⁾	(6)		1434 ⁽⁸⁾	(6)		1250 ⁽⁸⁾	Mbps
True Differential I/O	SERDES factor J = 3 ^{(5), (6), (7)}	(6)	_	(8)	(6)	_	(8)	(6)		(8)	Mbps
Standards - f _{HSDR} (data rate) ⁽¹⁴⁾	SERDES factor J = 2, uses DDR registers	(6)	_	840 <i>(8), (9)</i>	(6)	_	(8) , (9)	(6)		(8) , (9)	Mbps
	SERDES factor J = 1, uses DDR registers	(6)	_	420 <i>(8), (9)</i>	(6)	_	(8) , (9)	(6)	_	(8), (9)	Mbps
t _{x Jitter} - True Differential I/O	Total jitter for data rate, 600 Mbps – 1.6 Gbps	_	_	160	_	_	160	_	_	160	ps
Standards	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	—	0.1	_	_	0.1	UI
t _{DUTY} (13)	TX output clock duty cycle for Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
t _{RISE &} t _{FALL} (7), (11)	True Differential I/O Standards	_	_	160	_	_	180	_	_	200	ps
TCCS (13), (14)	True Differential I/O Standards		_	150	_	_	150	_		150	ps

Condition			l ⁽¹⁵⁾ , –E1S, 1M ⁽¹⁵⁾		- E2L ,	- I2L	-E1		-I1M ⁽¹⁶⁾ , -I3S	Unit
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
SERDES factor J = 4 to 10 ^{(5), (6), (7)}	_		1600	_		1434	_		1250	Mbps
SERDES factor J = 3 ^{(5), (6), (7)}	_	_	(8)	_		(8)	_	_	(8)	Mbps
SERDES factor J = 3 to 10	(6)	_	(12)	(6)		(12)	(6)	_	(12)	Mbps
SERDES factor J = 2, uses DDR registers	(6)	_	(9)	(6)		(9)	(6)	_	(9)	Mbps
SERDES factor J = 1, uses DDR registers	(6)	_	(9)	(6)		(9)	(6)	_	(9)	Mbps
—	—		10000	—	—	10000	—		10000	UI
_	_	_	300	_	_	300	_	_	300	± ppm
—	—		300	_	_	300	_		300	ps
	SERDES factor $J = 4 \text{ to } 10^{(5), (6), (7)}$ SERDES factor $J = 3^{(5), (6), (7)}$ SERDES factor J = 3 to 10 SERDES factor $J = 2$, uses DDR registers SERDES factor $J = 1$,	ConditionMinSERDES factor $J = 4 \text{ to } 10^{(5), (6), (7)}$ —SERDES factor $J = 3^{(5), (6), (7)}$ —SERDES factor $J = 3 \text{ to } 10$ (6)SERDES factor J = 2, uses DDR registers(6)SERDES factor J = 1, (6)(6)	ConditionImage: Image: Im	-IIL, -IIM (15)MinTypMaxSERDES factor J = 4 to 10 (5), (6), (7)SERDES factor J = 3 (5), (6), (7)SERDES factor J = 3 to 10(6)SERDES factor J = 2, uses DDR registers(6)SERDES factor J = 1, uses DDR registers(6)10000300	Condition I1L,I1M (75) Min Typ Max Min SERDES factor - - 1600 - J = 4 to 10 ($^{(5)}$, ($^{(6)}$, ($^{(7)}$) - - 1600 - SERDES factor - - ($^{(8)}$ - - SERDES factor - - ($^{(9)}$ ($^{(6)}$ - ($^{(12)}$ ($^{(6)}$ SERDES factor J = 2, uses DDR registers ($^{(6)}$ - ($^{(9)}$ ($^{(6)}$ SERDES factor J = 1, uses DDR registers ($^{(6)}$ - 10000 - - - - 300 -	Image:	Condition I1L,I1M (15) E2L, -I2L Min Typ Max Min Typ Max SERDES factor - - 1600 - - 1434 SERDES factor - - 1600 - - 1434 SERDES factor - - (8) - - (8) J = 3 (5). (6). (7) - - (8) - - (8) SERDES factor - (6) - (12) (6) - (12) SERDES factor J = 2, uses DDR registers (6) - (9) (6) - (9) SERDES factor J = 1, uses DDR registers (6) - 10000 - - 10000 - - - 300 - - 300 -	Condition -i1L, -i1M (15) -E2L, -i2L Min Typ Max Min Typ Max Min SERDES factor J = 4 to 10 (6 , (6), (7) 1600 1434 SERDES factor J = 3 (5 , (6 , (7) (8) (8) SERDES factor J = 3 to 10 (6) (12) (6) (12) (6) (12) (6) (12) (6) (9) (6) (9) (6) (9) (6) (9) (6) (9) (6) (9) (6) (9) (6) (9) (6) (9) (6) (9) (6) SERDES factor J = 1, uses DDR registers (6) 10000 10000	Condition I1L, -I1M (15) E2L, -I2L E3S, - Min Typ Max Min Typ Max Min Typ SERDES factor $J = 4 \text{ to } 10 (5), (6), (7)$ 1600 1434 SERDES factor $J = 3 (5), (6), (7)$ (8) SERDES factor $J = 3 (5), (6), (7)$ (12) (6) SERDES factor $J = 3 \text{ to } 10$ (6) (12) (6) $J = 3 \text{ to } 10$ (6) (12) (6) (12) (6) SERDES factor J = 2, uses DDR registers (6) (9) (6) 10000 10000 300	Condition -i1L, -i1M (15) -E2L, -i2L -E3S, -i3S Min Typ Max Min Typ Max Min Typ Max SERDES factor $-$ - 1600 - - 1434 - - 1250 SERDES factor $ (8)$ - $ (8)$ - $ (8)$ - $ (8)$ - $ (9)$ (6) - (12) (6) - (12) (6) - (12) (6) - (12) (6) - (12) (6) - (12) (6) - (12) (6) - (12) (6) - (9) (6) - (9) (6) - (9) (6) - (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)

Table 31. High-Speed I/O Specifications for Arria 10 Devices (1), (2), (10)-Preliminary (Part 2 of 2)

Notes to Table 31:

- (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.
- (2) For LVDS applications, you must use the PLLs in integer PLL mode.
- (3) Clock Boost Factor (W) is the ratio between the input data rate and the input clock rate.
- (4) This is achieved by using the PHY clock network.
- (5) The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.
- (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and serializer do not have a minimum toggle rate.
- (7) The V_{CC} and V_{CCP} must be on a combined power layer and a maximum load of 5 pF for chip-to-chip interface.
- (8) Pending silicon characterization.
- (9) The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}) provided you can close the design timing and the signal integrity meets the interface requirements.
- (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.
- (11) This applies to default pre-emphasis and V_{OD} settings only.
- (12) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.
- (13) Not applicable for DIVCLK = 1.
- (14) Requires package skew compensation with PCB trace length.
- (15) When you power V_{CC} and V_{CCP} at nominal voltage of 0.90 V.
- (16) When you power V_{CC} and V_{CCP} at lower voltage of 0.83 V.

Figure 3 shows the DPA lock time specifications with the DPA PLL calibration option enabled.

Figure 3. DPA Lock Time Specification with DPA PLL Calibration Enabled

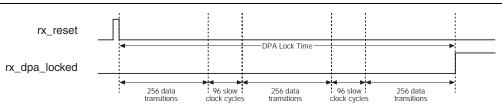


Table 32 lists the DPA lock time specifications for Arria 10 devices, which are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

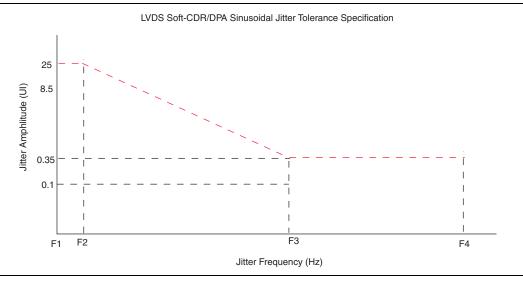
Table 32. DPA Lock Time Specifications for Arria 10 Devices—Preliminary

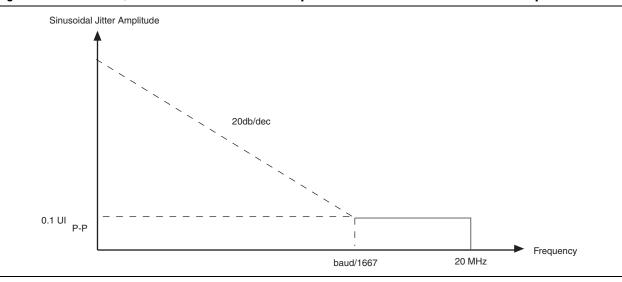
Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽¹⁾	Maximum Data Transition
SPI-4	0000000001111111111	2	128	640
Parallel Rapid I/O	00001111	2	128	640
	10010000	4	64	640
Miscellaneous	10101010	8	32	640
wiscenarieous	01010101	8	32	640

Note to Table 32:

(1) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 4 shows the LVDS soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate equal to 1.6 Gbps.




Table 33 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate equal to 1.6 Gbps.

Jitter Fr	equency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.00
F2	17,565	25.00
F3	1,493,000	0.35
F4	50,000,000	0.35

Table 33. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.6 Gbps—
--

Figure 5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate less than 1.6 Gbps.

Figure 5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate Less than 1.6 Gbps

DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications

Table 34 lists the DLL frequency range specifications for Arria 10 devices.

Arria 10 devices support memory interface frequencies lower than 667 MHz, although the reference clock that feeds the DLL must be at least 667 MHz. To support interfaces below 667 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range.

Table 34. DLL Frequency Range Specifications for Arria 10 Devices—Preliminary

Parameter	Performance (for All Speed Grades)	Unit
DLL operating frequency range	667 – 1333	MHz

Table 35 lists the DQS phase shift error for Arria 10 devices. This error specification is the absolute maximum and minimum error.

Table 35. DQS Phase Shift Error Specification for DLL-Delayed Clock $(t_{\mbox{DQS}_{\mbox{PSERR}}})$ for Arria 10 Devices—Preliminary

Symbol	Performance (for All Speed Grades)	Unit
t _{DQS_PSERR}	5	ps

Table 36 lists the memory output clock jitter specifications for Arria 10 devices.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL, or generated using differential signal-splitter and double data I/O circuits clocked by a PLL output routed on a PHY clock network as specified. Altera recommends using PHY clock networks for better jitter performance.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-topeak is applied with bit error rate (BER) 10⁻¹², equivalent to 14 sigma.

Table 36. Memory Output Clock Jitter Specification for Arria 10 Devices—Preliminary

Parameter	Clock Network	Symbol	-E1S,	-E1M ⁽¹⁾ , , -I1L, M ⁽¹⁾	–E2L	, - 12 L	–E1M ⁽²⁾ , –E3S,		Unit
			Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{\text{JIT}(\text{per})}$	58	58	58	58	58	58	ps
PHY clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	58	58	58	58	58	58	ps
	Duty cycle jitter	t _{JIT(duty)}	58	58	58	58	58	58	ps

Notes to Table 36:

(1) When you power V_{CC} and V_{CCP} at nominal voltage of 0.90 V.

(2) When you power V_{CC} and V_{CCP} at lower voltage of 0.83 V.

OCT Calibration Block Specifications

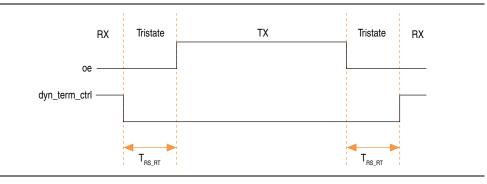

Table 37 lists the OCT calibration block specifications for Arria 10 devices.

Table 37.	OCT	Calibration	Block	Specifications	s for Arria	a 10	Devices-	-Preliminary
-----------	-----	--------------------	-------	----------------	-------------	------	----------	--------------

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks	—	_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for $R_{\rm S}$ OCT /R_T OCT calibration	> 1000		_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for OCT code to shift out	_	32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT		2.5	_	ns

Figure 6 shows the T_{RS_RT} for oe and dyn_term_ctrl signals.

Figure 6.	Timing Diagram	for oe and dyn	_term_ctrl Signals
-----------	-----------------------	----------------	--------------------

Configuration Specification

This section provides configuration specifications and timing for Arria 10 devices.

POR Specifications

Table 38 lists the specifications for fast and standard POR for Arria 10 devices.

Table 38. Fast and Standard POR Delay Specification for Arria 10 Devices (1)-Preliminary

POR Delay	Minimum	Maximum	Unit
Fast	4	12 ⁽²⁾	ms
Standard	100	300	ms

Notes to Table 38:

(1) Select the POR delay based on the MSEL setting as described in the "Configuration Schemes for Arria 10 Devices" table in the Configuration, Design Security, and Remote System Upgrades in Arria 10 Devices chapter.

JTAG Configuration Timing

Table 39 lists the JTAG timing parameters and values for Arria 10 devices.

Table 39. JTAG Timing Parameters and Values for Arria 10 Devices— <i>Preliminary</i>				
Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30,167 ⁽¹⁾	_	ns
t _{JCH}	TCK clock high time	14	_	ns
t _{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output	_	11 <i>(2)</i>	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14 <i>(2)</i>	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14 <i>(2)</i>	ns

Table 20 ITAC Timing Parameters and Values for Arria 10 Deviace Droliminory

Notes to Table 39:

(1) The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

(2) A 1-ns adder is required for each V_{CCI0} voltage step down from 3.0 V. For example, $t_{JPC0} = 11$ ns if V_{CCI0} of the TDO I/O bank = 2.5 V, or 11 ns if it equals 1.8 V.

The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize (2) after the POR trip.

FPP Configuration Timing

This section describes the fast passive parallel (FPP) configuration timing parameters for Arria 10 devices.

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is *r* times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP x16 where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Table 40 lists the DCLK-to-DATA[] ratio for each combination.

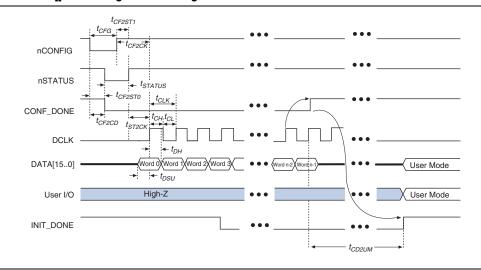

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] ratio (r)
	Off	Off	1
EDD (8 bit wide)	On	Off	1
FPP (8-bit wide)	Off	On	2
	On	On	2
	Off	Off	1
FPP (16-bit wide)	On	Off	2
	Off	On	4
	On	On	4
	Off	Off	1
FPP (32-bit wide)	On	Off	4
	Off	On	8
	On	On	8

Table 40. DCLK-to-DATA[] Ratio for Arria 10 Devices—Preliminary

FPP Configuration Timing when DCLK to DATA[] = 1

Figure 7 shows the timing waveform for a FPP configuration when using a MAX[®] II device as an external host. This timing waveform shows timing when the DCLK-to-DATA[] ratio is 1.

When you enable decompression or the design security feature, the DCLK-to-DATA [] ratio varies for FPP x8, FPP x16, and FPP x32. For the respective DCLK-to-DATA [] ratio, refer to Table 40.

Figure 7. DCLK-to-DATA[] FPP Configuration Timing Waveform When the Ratio is 1

Table 41 lists the timing parameters for Arria 10 devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 41.	FPP Timing	Parameters When	i the DCLK-to-DATA	[] Ratio is 1 for	r Arria 10 Devices (¹⁾ — Preliminary

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽³⁾	μs
t _{CF2CK} (4)	nCONFIG high to first rising edge on DCLK	1,506		μs
t _{ST2CK} (4)	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0		ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f	DCLK frequency (FPP $\times 8/\times 16$)	—	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁵⁾	175	437	μs
+	CONTRACT high to GUILLAN anabled	4 × maximum		
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	DCLK period		_
t _{cd2umc}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (17,408 × CLKUSR period)	_	_

Notes to Table 41:

(1) Use these timing parameters when the decompression and design security features are disabled.

(2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value is applicable if you do not delay configuration by externally holding the nstatus low.

(4) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

(5) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Figure 8 shows the timing waveform for a FPP configuration when using a MAX II device or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

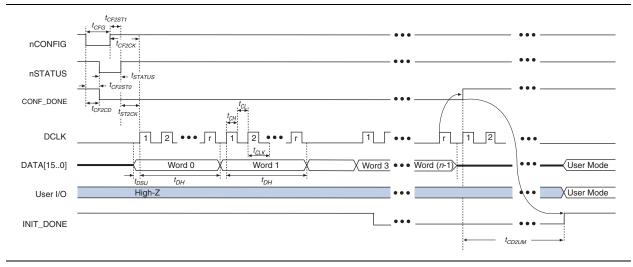


Figure 8. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1

Table 42 lists the timing parameters for Arria 10 devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1.

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μs
t _{CF2CK} (3)	nCONFIG high to first rising edge on DCLK	1,506	—	μs
t _{ST2CK} (3)	nSTATUS high to first rising edge of DCLK	2	—	μs
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽⁴⁾	_	S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f	DCLK frequency (FPP $\times 8/\times 16$)	—	125	MHz
f _{MAX}	DCLK frequency (FPP \times 32)	—	100	MHz
t _R	Input rise time	_	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽⁵⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (17,408 × CLKUSR period)	_	_

Notes to Table 42:

- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.
- (4) N is the <code>DCLK-to-DATA</code> ratio and f_{DCLK} is the <code>DCLK</code> frequency the system is operating.
- (5) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

AS Configuration Timing

Figure 9 shows the timing waveform for the active serial (AS) x1 mode and AS x4 mode configuration timing.

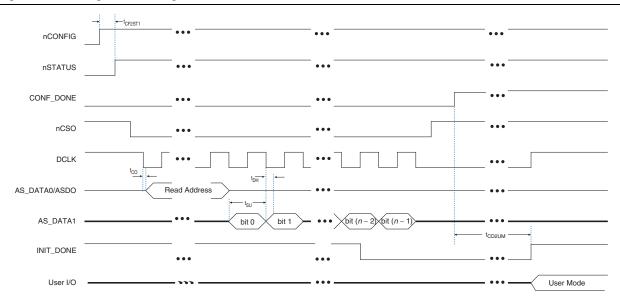


Figure 9. AS Configuration Timing Waveform

Table 43 lists the timing parameters for AS x1 and AS x4 configurations in Arria 10 devices.

The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

The t_{CF2CD}, t_{CF2ST0}, t_{CFG}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in Table 45 on page 1–42.

Table 43. AS Timing Parameters for AS x1 and AS x4 Configurations in Arria 10 Devices—Preliminary

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	—	4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5		ns
t _H	Data hold time after falling edge on DCLK	0		ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (17,408 × CLKUSR period)	_	_

Table 44 lists the internal clock frequency specification for the AS configuration scheme.

The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Table 44. DCLK Frequency Specification in the AS Configuration Scheme—Preliminary

Parameter	Minimum	Typical	Maximum	Unit
	TBD	TBD	12.5	MHz
DCLK frequency in AS	TBD	TBD	25.0	MHz
configuration scheme	TBD	TBD	50.0	MHz
	TBD	TBD	100.0	MHz

PS Configuration Timing

Figure 10 shows the timing waveform for a PS configuration when using a MAX II device or microprocessor as an external host.

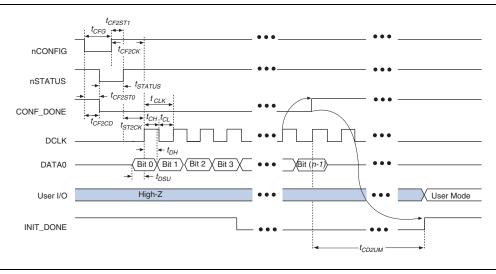


Table 45 lists the PS configuration timing parameters for Arria 10 devices.

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG IOW to nSTATUS IOW	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{status}	nSTATUS low pulse width	268	1,506 ⁽¹⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μs
t _{CF2CK} (3)	nCONFIG high to first rising edge on DCLK	1,506	—	μs

Symbol	Parameter	Minimum	Maximum	Units
t _{ST2CK} (3)	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency	—	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	—	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (17,408 × CLKUSR period)	_	_

Table 45. PS Timing Parameters for Arria 10 Devices—Preliminary (Part 2 of 2)

Notes to Table 45:

(1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

(3) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

(4) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

Initialization

Table 46 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency for Arria 10 devices.

Table 46. Initialization Clock Source Option and the Maximum Frequency for Arria 10 Devices—	•
Preliminary	

Initialization Clock Source	Configuration Schemes	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP	12.5	TBD
CLKUSR (1)	AS, PS, and FPP	TBD	עטי

Note to Table 46:

(1) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Configuration Files

Use Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size.

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Arria 10 devices.

Variant	Product Line	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
Arria 10 GV	GX 900	335,106,890	TBD
Arria 10 GX	GX 1150	335,106,890	TBD
Arria 10 GT	GT 900	335,106,890	TBD
AITIA TU GT	GT 1150	335,106,890	TBD

Table 47. Uncompressed .rbf Sizes for Arria 10 Devices—Preliminary

Table 48 lists the minimum configuration time estimation for Arria 10 devices. The estimated values are based on the configuration **.rbf** sizes in Table 47.

Table 48. Minimum Configuration Time Estimation for Arria 10 Devices—Preliminary

		Active Serial ⁽¹⁾			Fast Passive Parallel ⁽²⁾		
Variant	Product Line	Width	DCLK (MHz)	Minimum Configuration Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)
Arria 10 GX	GX 900	4	100	837.77	32	125	83.78
Ania TO GA	GX 1150	4	100	837.77	32	125	83.78
Arria 10 GT	GT 900	4	100	837.77	32	125	83.78
Allia 10 GT	GT 1150	4	100	837.77	32	125	83.78

Notes to Table 48:

(1) DCLK frequency of 100 MHz using external CLKUSR.

(2) Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Remote System Upgrades

Table 49 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 49. Remote System Upgrade Circuitry Timing Specifications— <i>Pre</i>

Parameter	Minimum	Maximum	Unit
f _{MAX_RU_CLK} (1)	—	40	MHz
t _{RU_nCONFIG} (2)	250	—	ns
t _{RU_nRSTIMER} (3)	250	—	ns

Notes to Table 49:

(1) This clock is user-supplied to the remote system upgrade circuitry. If you are using the ALTREMOTE_UPDATE megafunction, the clock user-supplied to the ALTREMOTE_UPDATE megafunction must meet this specification.

(2) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the *Configuration, Design Security, and Remote System Upgrades in Arria 10 Devices* chapter.

(3) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the Configuration, Design Security, and Remote System Upgrades in Arria 10 Devices chapter.

User Watchdog Internal Circuitry Timing Specification

Table 50 lists the frequency specifications for the user watchdog internal oscillator.

 Table 50. User Watchdog Internal Oscillator Frequency Specifications for Arria 10 Devices—

 Preliminary

Parameter	Minimum	Typical	Maximum	Units
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

The Excel-based I/O Timing spreadsheet will be available in a future release of the *Arria 10 Device Datasheet*.

Glossary

Table 51 lists the glossary for this datasheet.

Table 51. Glossary Table (Part 1 of 4)

Letter	Subject	Definitions		
A B C	_	_		
D	Differential I/O Standards	Receiver Input Waveforms Single-Ended Waveform V _D Positive Channel (p) = V _{IH} Negative Channel (n) = V _{IL} Ground Differential Waveform V _D V_{D} V_D $p \cdot n = 0 V$ Transmitter Output Waveforms Single-Ended Waveform V _{OD} Positive Channel (p) = V _{OH} V _{CM} Positive Channel (p) = V _{OH} Offerential Waveform V _{CM} Positive Channel (p) = V _{OL} Ground Offerential Waveform V _{OD} V_{OD} V _{OD} $P \cdot n = 0 V$		
E	—	—		
F	f _{hsclk} f _{hsdr}	Left/right PLL input clock frequency. High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.		
G	f _{hsdrdpa}	High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.		
H				

Table 51. Glossary Table (Part 2 of 4)

Letter	Subject	Definitions
	J	High-speed I/O block—Deserialization factor (width of parallel data bus).
J	JTAG Timing Specifications	JTAG Timing Specifications: TMS TDI TDI $t_{JCP} \rightarrow t_{JCL} \rightarrow t_{JPSU} \rightarrow t_{JPH}$ TCK $t_{JPZX} \rightarrow t_{JPCO} \rightarrow t_{JPCO} \rightarrow t_{JPXZ}$
K		
L		
M	_	—
N O		
P	Preliminary	Some tables show the designation as "Preliminary". Preliminary characteristics are created using simulation results, process data, and other known parameters. Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no preliminary designations on finalized tables.
Q		—
R	RL	Receiver differential input discrete resistor (external to the Arria 10 device).

Table 51. Glossary Table (Part 3 of 4)

Letter	Subject	Definitions					
	Sampling window (SW)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window, as shown:					
S	Single-ended voltage referenced I/O standard	The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing. Single-Ended Voltage Referenced I/O Standard VIEWACD VIEWACD VIEWACD VIEWACD VIEWACD VIEWACD VIEWACD VIEWACD					
	t _C	High-speed receiver/transmitter input and output clock period.					
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).					
	t _{duty}	High-speed I/O block—Duty cycle on high-speed transmitter output clock.					
т		Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w)					
	t _{FALL}	Signal high-to-low transition time (80–20%) Cycle-to-cycle jitter tolerance on the PLL clock input					
	t _{INCCJ}						
	t _{OUTPJ_IO}	Period jitter on the GPIO driven by a PLL					
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL					
	t _{RISE}	Signal low-to-high transition time (20–80%)					
U	_	_					

Letter	Subject	Definitions		
	V _{CM(DC)}	DC Common mode input voltage.		
	V _{ICM}	Input Common mode voltage—The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.		
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.		
	V _{IH(AC)}	High-level AC input voltage		
	V _{IH(DC)}	High-level DC input voltage		
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.		
	V _{IL(AC)}	Low-level AC input voltage		
	V _{IL(DC)}	Low-level DC input voltage		
	V _{OCM}	Output Common mode voltage—The common mode of the differential signal at the transmitter.		
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.		
	V _{SWING}	Differential input voltage		
	V _{IX}	Input differential cross point voltage		
	V _{OX}	Output differential cross point voltage		
W	W	High-speed I/O block—Clock Boost Factor		
X,				
Y,	—	—		
Z				

Table 51. Glossary Table (Part 4 of 4)

Document Revision History

Table 52 lists the revision history for this document.

Table 52. Document Revision History

Date	Version	Changes
March 2014	2014.03.14	Updated Table 3, Table 5, Table 21, Table 23, Table 24, Table 31, and Table 40.
December 2013	2013.12.06	Updated Figure 1 and Figure 2.
December 2013	2013.12.02	Initial release.